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When reminded of an unpleasant experience, people often try to exclude the unwanted memory from awareness, a process known
as retrieval suppression. Here we used multivariate decoding (MVPA) and representational similarity analyses on EEG data to track
how suppression unfolds in time and to reveal its impact on item-specific cortical patterns. We presented reminders to aversive
scenes and asked people to either suppress or to retrieve the scene. During suppression, mid-frontal theta power within the first
500 ms distinguished suppression from passive viewing of the reminder, indicating that suppression rapidly recruited control. During
retrieval, we could discern EEG cortical patterns relating to individual memories—initially, based on theta-driven visual perception of
the reminders (0 to 500 ms) and later, based on alpha-driven reinstatement of the aversive scene (500 to 3000 ms). Critically, suppressing
retrieval weakened (during 360 to 600 ms) and eventually abolished item-specific cortical patterns, a robust effect that persisted until the
reminder disappeared (780 to 3000 ms). Representational similarity analyses provided converging evidence that retrieval suppression
weakened the representation of target scenes during the 500 to 3000 ms reinstatement window. Together, rapid top-down control
during retrieval suppression abolished cortical patterns of individual memories, and precipitated later forgetting. These findings reveal
a precise chronometry on the voluntary suppression of individual memories.
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Introduction
Following an upsetting event, even seemingly innocuous
reminders can bring us back to the traumatic scene in the blink
of an eye, triggering intrusive memories and distress. When this
happens, people often recruit inhibitory control to terminate
retrieval and to keep unwelcome memories out of awareness,
a process known as retrieval suppression (Anderson and Hulbert
2021; Engen and Anderson 2018). Although effective retrieval
suppression is essential for cognitive functioning and mental
well-being (Catarino et al. 2015; Hu et al. 2017; Mary et al. 2020),
much remains unknown about its mechanisms. Indeed, no study
has yet observed individual memories as they are intentionally
suppressed, a prerequisite to tracking the dynamics of memory
control.

Neuroimaging research suggests that during retrieval sup-
pression, the prefrontal cortex exerts inhibitory control over the
hippocampus and the medial temporal lobe to stop retrieval
(Anderson et al. 2004; Depue et al. 2007; Mary et al. 2020).
Top-down control further attenuates activity in neocortical
areas implicated in memory reinstatement (Gagnepain et al.
2017). Given its limited temporal resolution, however, functional
MRI precludes a detailed account of the temporal dynamics
underlying the suppression of individual memories.

Conversely, research using EEGs can track the neurodynamics
of retrieval suppression. Specifically, retrieval suppression
enhanced the midfrontal N450 and theta power that are related to
conflict monitoring and inhibitory control processes (Bergström
et al. 2009; Mecklinger et al. 2009; Depue et al. 2013; Crespo–
García et al. 2022). Moreover, suppressing unwanted memories
attenuates EEG activity implicated in episodical retrieval and
working memory maintenance, e.g. P300 and negative slow-
waves (Hu et al. 2015; Hellerstedt et al. 2016). However, EEGs’
poor spatial resolution, together with a focus on univariate
between-condition analyses, has rendered it difficult to isolate
individual memories as they are suppressed. Recently, advances
in multivariate analyses have allowed researchers to exploit EEG
scalp distributions, aided by representational similarity analysis
(RSA), to identify specific memory representations (Kriegeskorte
et al. 2008; Wolff et al. 2017; Bae and Luck 2018). Here, leveraging
EEGs’ temporal resolution and multivariate analyses, we sought
to isolate cortical patterns unique to individual memories, and to
observe how suppression abolishes those item-specific patterns.

For this purpose, we asked participants to retrieve or to sup-
press aversive scenes when confronting object cues in a Think/No-
Think (TNT) paradigm (Küpper et al. 2014; Catarino et al. 2015).
To track the suppression of individual memories, we took a 2-step
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approach in our multivariate EEG analyses. First, we used MVPA
within each retrieval condition to isolate item-specific cortical
EEG patterns and to examine their temporal development in
relation to suppression. Next, we constructed subjective repre-
sentational dissimilarity matrices (RDM) for both cues and aver-
sive scenes, and then correlated these matrices with EEG-based
decoding matrices using RSA. The RSA thus provides a power-
ful tool to investigate the representational nature of the item-
specific decoding patterns (Grootswagers et al. 2019; Liu et al.
2023; Kriegeskorte et al. 2008; Proklova et al. 2019; Zhao et al.
2017).

We hypothesized that suppression will arise during 2 critical
windows to stop retrieval: first, suppression will engage a rapid
inhibitory control process well before the reminder elicits full-
blown episodic recollection, i.e. to disrupt the cue-to-memory
conversion process around 500 ms (Yaffe et al. 2014; Staresina and
Wimber 2019; Treder et al. 2021). Second, given that hippocampus-
driven pattern completion would reinstate neocortex-mediated
memory traces during a 500 to 1500 ms window, suppression
should attenuate and even abolish residual cortical reinstate-
ments during 500 to 1500 ms. We further examined 4 to 8 Hz theta
activity during the early 0 to 500 ms window between conditions,
given the established role of frontal theta in cognitive control
(Nigbur et al. 2011; Cavanagh and Frank 2014; Waldhauser et al.
2015; Crespo-García et al. 2022). By comparing how item-specific
cortical patterns unfold over time between the retrieval and the
suppression conditions, we gain a window into the timeline for
how inhibitory control affects the recollection of individual mem-
ories.

Materials and methods
Participants
Recent emotional TNT (eTNT) research has typically recruited 18
to 25 participants, and yielded large effect sizes (n = 18 in Catarino
et al. 2015; n = 24 in Gagnepain et al. 2017; n = 24 in Küpper et al.
2014; n = 18 in Liu et al. 2016; n = 25 in Zhang et al. 2016). A recent
meta-analysis of TNT studies also revealed an effect size of 0.66
when using a direct retrieval suppression strategy among healthy
participants (Stramaccia et al. 2021, page 839). We planned to
recruit at least 36 participants, expecting a smaller effect size
based on our pilot study using identical materials and procedures
(n = 24). Sensitivity analysis revealed that a sample size of 36
would allow us to detect a moderate effect size of dz = 0.48 at 80%
power, with a 5% false positive rate. With an expected exclusion
rate of 10%, we recruited 41 participants (mean age = 19.57, age
range: 18 to 23 yr, 26 females) from the University of Hong Kong.
One participant was excluded because of noncompliance of task
instructions, leaving 40 participants in the analyses. In the sup-
plemental experiment, we additionally recruited 22 participants
(mean age = 24.91, age range: 19 to 31 yr, 17 females) from the Uni-
versity of Hong Kong to obtain the subjective similarity ratings on
the images used in the main experiment for RSA. Ethical approval
was obtained from the Human Research Ethics Committee of
The University of Hong Kong. All participants provided written
consent prior to their participation.

Materials and procedure
We used 42 object-scene picture pairs from Küpper et al. (2014).
Scenes depict aversive contents such as natural disasters, assault,
injury, etc (Lang et al. 2008). Each scene was rated by an
independent sample of participants (n = 12) on a 9-point Likert
scale for valence (1, extremely negative; 9 extremely positive)

and arousal (1, extremely calm; 9 extremely exciting/arousing).
Each object resembled an item from its paired negative scene,
thus establishing naturalistic and strong associations. Six pairs
were used for instruction and practice purposes. The remaining
36 pairs were equally divided into 3 sets, with 12 pairs in
each of 3 following conditions: Think, No-Think, and Baseline.
Pictures used in the 3 conditions were counterbalanced across
participants and were matched on valence and arousal ratings
(for valence, mean ± SD, 1.65 ± 0.06; 1.68 ± 0.07; 1.68 ± 0.07; for
arousal: 5.11 ± 0.28; 5.10 ± 0.23; 5.07 ± 0.21). Another set of 6
objects without any paired scenes was used as Perceptual Baseline
trials, which did not involve any memory retrieval. Participants
completed the following sessions in order: Encoding, EEG-based
TNT, and Cued Recall (Fig. 1A). At the end of the study, participants
completed a 3-item, instruction compliance questionnaire. For
transparent reporting, we also implemented an implicit affect
task right after the TNT task to measure retrieval suppression’s
aftereffect on spontaneous affective responses. These results
are beyond the scope of the current study and will not be
reported here.

Encoding
Participants were presented with 42 object-scene pairings, plus
6 objects (without scene pairing) from the Perceptual Baseline
condition. This ensured that participants would be familiar with
all the objects during the subsequent TNT phase. Each object-
scene pair was presented on an LCD monitor for 6 s with an
inter-trial-interval (ITI) of 1 s. Participants were instructed to pay
attention to all the details of each scene, and to associate the
left-sided object and the right-sided scene. They next completed
a test–feedback session, in which each object was presented for
up to 4 s until participants pressed a button indicating whether
they could recall the associated scene or not. If participants gave
a “yes” response, they were presented with 3 scenes from the
learning phase and needed to identify the correct one within
another 4 s. Regardless of accuracy, the correct pairing was then
presented for 2.5 s. This test–feedback cycle was repeated until
participants reached 60% accuracy, and no limit on the number
of cycles required to achieve this criterion was set. All partic-
ipants reached 60% accuracy within 3 rounds: 26 participants
reached this criterion within the first cycle, 13 participants within
2 cycles, and 1 in 3 cycles. Following the test–feedback cycles,
participants completed a recognition-without-feedback test, so as
to confirm that items from different conditions were encoded at
comparable levels before the TNT phase (mean ± SD across 3 con-
ditions are 86.0% ± 12.4%, F(73.4) = 73.40, P = 0.237; MThink = 86.9%,
MNo-Think = 84.2%, MBaseline = 87.3%).

Think/No-Think
Participants were presented with 24 objects from the 36 object-
scene pairings, with 12 objects in each of the TNT conditions,
respectively. The remaining 12 objects were not shown in the
TNT and were used in the Baseline condition. These 24 objects
were presented in either yellow- or blue-colored frames indicating
Think and No-Think conditions, with colors being counterbal-
anced across participants. Six objects (without any pairing scenes)
were presented in white-colored frames and served as Perceptual
Baseline trials. Thus, 30 unique objects were shown in the TNT
session. Each object was presented 10 times, resulting in 300 trials.
Each trial began with a fixation cross (2 to 3 s), followed by the
object in a colored frame for 3 s. The ITI was 1 s.

Across all 3 conditions, we instructed participants to fix their
eyes on the object, and to never disengage attention from it
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Fig. 1. Experimental procedure and suppression-induced forgetting. A) The eTNT task included 3 phases. (i) Encoding: participants first learned object-
aversive scene stimulus pairings; and they also viewed some objects without any paired scene (i.e. perceptual baseline). Scene images are from the
International Affective Picture System (Lang et al. 2008); object images are from Brady et al. (2008); (ii) eTNT task: participants either retrieved (Think) or
suppressed the retrieval (No-Think) of negative scene memories. Participants were also presented with Perceptual Baseline trials without any retrieval,
i.e. no-retrieval; Think, No-Think, and Perceptual Baseline instructions were cued by a green, red, or blue colored box, respectively, surrounding the cue
object; (iii) recall: participants viewed object cues and verbally described their associated scenes. During the TNT phase, we used yellow, blue, and white
colored box surrounding the object cues to signal different conditions (Think, No-Think, Perceptual Baseline), with the colors being counterbalanced
across participants. B) Suppression-induced forgetting on Identification, Gist and Detail measures from the recall test. Suppression-induced forgetting can
be seen in the lower recall of No-Think than Baseline items (n = 40).

during the whole 3-s presentation. For Think trials, participants
were instructed to try their best to think about each object’s
associated scene in detail, and to keep the scene in mind while the
object remained on the monitor. For No-Think trials, participants
were given direct-suppression instructions: they should pay full
attention to the presented object while refraining from thinking
about anything associated with it. If any thoughts or memories
other than the object came to mind, they needed to try their
best to push the intruding thoughts/memory out of their mind
and refocus on the object. Participants were also prohibited from
using any thought substitution strategies (i.e. thinking about a
different scene). For Perceptual Baseline trials, participants were

simply instructed to focus on the object throughout the whole
trial.

Cued recall
Following the TNT session, participants were presented with each
of the 36 objects from Think, No-Think, and Baseline conditions.
Each object was presented at the center of the monitor, alongside
a beep sound prompting participants to verbally describe the
associated scenes within 15 s. The ITI was 3 s. Participants’ verbal
descriptions were recorded for later scoring. Perceptual Baseline
objects were not shown in this recall test because they were not
paired up with any scenes.
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Subjective dissimilarity rating
To obtain measures of subjective dissimilarity ratings of cue
objects and target scenes for RSA analysis, an independent sample
of participants gave pairwise (dis)similarity ratings for the cue
(object) and target (scene) images regarding their perceptual and
conceptual dissimilarities. Participants gave ratings in a 12 by 12
matrix for the 12 images in each of the Think and No-Think
conditions, and in a 6 by 6 matrix for the 6 images in the Perceptual
Baseline condition. Images were presented on the top row and the
most left column, with columns/rows representing the same 12
(or 6) images. Participants rated the perceptual and conceptual
dissimilarities between every possible stimulus pairing, within
the cue category and the target category, separately. Participants
rated along the scale from 1 (extremely dissimilar) to 9 (extremely
similar).

Cued recall analyses
Two trained raters who were blind to experimental conditions
coded each of the verbal descriptions along 3 dimensions fol-
lowing the criteria used in a previous study (Küpper et al. 2014),
namely, Identification, Gist, and Detail. Each measure focused on
different aspects of memories: Identification referred to whether
the verbal description was clear enough to correctly identify the
unique scene, and was scored as 1 or 0. Inconsistent ratings were
resolved by averaging 0 and 1, resulting in a score of 0.5. Gist mea-
sured whether participants’ verbal descriptions contained critical
elements pertaining to the scene’s main themes. Two independent
raters identified 2 to 4 gists for each scene (Küpper et al. 2014). We
scored gist as proportion, using the number of correct gists from
participants’ verbal reports divided by all possible gists for each
scene. The Detail score measured how many correct meaningful
segments were provided during the verbal description, and were
scored on the number of details. Interrater agreement for the
scoring of all 3 measures was above 0.7, which was considered as
acceptable (Blick et al. 2018): Identification r = 0.71, Gist r = 0.90,
Detail r = 0.86.

We conducted separate 1-way analyses of variance (ANOVAs)
with 3 within-subject conditions (Think vs. No-Think vs. Baseline)
on the percentage of Identification, Gist, and Details. We then
examined the suppression-induced forgetting effect by conduct-
ing planned pairwise t-tests between No-Think and Baseline, with
a negative difference (i.e. No-Think minus Baseline) indicating
below-baseline, suppression-induced forgetting.

We report findings with P < 0.05 as significant. Within-
subject ANOVAs are reported with Greenhouse–Geisser corrected
P-values whenever the assumption of sphericity was violated. We
report Cohen’s dz as effect size given our within-subject design
(Lakens 2013).

EEG recording and preprocessing
Continuous EEGs were recorded during the TNT session using
ANT Neuro eego with a 500 Hz sampling rate (ANT, The Nether-
lands), from 64-channel ANT Neuro Waveguard caps with elec-
trodes positioned according to the 10 to 5 system. The AFz served
as the ground and CPz was used as the online reference. Electrode
impedances were kept below 20 kilo-ohms before recording. Eye
movements were monitored through EOG channels.

Raw EEG data were preprocessed in MATLAB using EEGlab
Toolbox (Delorme and Makeig 2004) and ERPlab Toolbox (Lopez–
Calderon and Luck 2014): data were first downsampled to 250 Hz,
and were band-pass filtered from 0.1 to 60 Hz, followed by a notch
filter of 50 Hz to remove line noise. Bad channels were identified

via visual inspection, and were removed and interpolated
before re-referencing to common averages. Continuous EEG
data were segmented into −1000 to 3500 ms epochs relative to
the cue onset, and baseline corrected using −500 to 0 ms as
baseline period. Next, independent component analyses were
implemented to remove eye blinks and muscle artifacts. Epochs
with remaining artifacts (exceeding ±100 μV) were rejected.
The numbers of accepted epochs used in all following analyses
were comparable across Think (Mean ± SD, 100.33 ± 11.57) and
No-Think (103.18 ± 10.61) conditions. Valid trials number in
Perceptual Baseline is 56.58 ± 3.23. All EEG analyses were based
on 61 electrodes, excluding EOG, M1, M2, AFz (ground) and CPz
(online reference).

Univariate event-related potentials and time
frequency analyses
Six electrode clusters were selected for event-related potentials
(ERP) and for Time Frequency analyses: left parietal (CP3/5, P3/5),
parietal (Pz, CP1/2, P1/2), right parietal (CP2/4, P2/4), frontocentral
(FC1/2, C1/2, FCz, Cz), left prefrontal (AF3, F3/5), and right pre-
frontal (AF4, F4/6).

We focused on a priori defined ERP components based on
previous ERP-TNT research (e.g. Bergström et al. 2009; Chen et al.
2012; Depue et al. 2013; Hellerstedt et al. 2016; Hu et al. 2015;
Mecklinger et al. 2009). These ERP components and time windows
are: the frontocentral N450 (300 to 500 ms), taken to be sensitive of
inhibitory control, and the parietal P300 (300 to 800 ms), indicative
of episodic recollection. We calculated average amplitude from
the time window, and submitted the amplitudes to paired t-tests
between No-Think and Perceptual Baseline trials.

Time frequency transformation was performed in Fieldtrip
toolbox (Oostenveld et al. 2011). Frequencies of interest increased
logarithmically from 2.8 to 30 Hz, resulting in 22 frequency bins.
Wavelet cycles increased linearly along with frequencies from 3
to 7, with decibel baseline normalization using power on −500 to
−200 ms. We focus on the early theta power change on 200 to
400 ms which is indicator of inhibitory control (Nigbur et al. 2011;
Cavanagh and Frank 2014), and theta and alpha power change on
a post hoc late time window (500 to 3000 ms) following condition
level decoding results.

Early theta power at each electrode was compared between No-
Think and Perceptual Baseline after averaging on 200 to 400 ms
across 4 to 8 Hz, and then cluster corrected according to electrode
positions in Fieldtrip (Oostenveld et al. 2011). The suppression-
associated reduction of theta and alpha power on later time
window was examined by averaging on 500 to 3000 ms across 4 to
8 Hz (theta) and 9 to 12 Hz (alpha), and then compared between
No-Think and Think/Perceptual Baseline with neighbor cluster
correction in Fieldtrip. The channel neighbors were defined in the
same way as in channel searchlight analysis.

Condition-/item-level decoding with time
domain EEG
Decoding analyses were conducted in MATLAB using scripts
adapted from Bae and Luck (2018), which used a support vector
machine (SVM) and error-correcting output codes (ECOC). The
ECOC model combined results from several binary classifiers for
prediction output in multiclass classification. The preprocessed
EEGs were PCA-decomposed (Fieldtrip toolbox, Oostenveld et al.
2011), with the first 15 PCA components as features in the
decoding analyses. PCA decomposition was applied to reduce
potential overfitting in classifier training because of the large
number of features, i.e. number of channels (Jollans et al. 2019).
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In the condition-level decoding, we used 1-vs.-1 SVMs to per-
form pairwise decoding among the 3 conditions (Think vs. Per-
ceptual Baseline, No-Think vs. Perceptual Baseline, and Think vs.
No-Think). For Think vs. Perceptual Baseline and No-Think vs.
Perceptual Baseline condition-level decoding, we first subsampled
trials in T/NT to be comparable with Perceptual Baseline so that
each condition had about 56 trials. Next, EEG trials from each
condition were randomly divided into 10 equal sets and were
averaged within each set into sub-ERPs to improve signal-to-
noise ratio. The decoding was achieved within each participant
from −500 to 3000 ms using these sub-ERPs in a 10-fold cross
validation: each time 9 of the 10 sub-ERPs are used as train-
ing data set with the condition labels, and the remaining one
was used as testing data set. After splitting training and testing
data sets, sub-ERPs were both normalized using the mean and
standard deviation of training data set to remove ERP-related
activity. This process was conducted on every 20 ms time point
with the surrounding ±10 ms data averaged, and repeated for 10
iterations to minimize the impact of random train–test splitting.
We were comparing condition-level decoding accuracy against
its chance level, 50%, given our pairwise, binary decoding. The
use of 1/number of classes as the chance level might not always
be appropriate (Combrisson and Jerbi 2015). Here, we used the
pre-stimulus baseline period of each epoch in a classification
analysis to estimate the chance level, given that the baseline data
should not contain any condition-related information. The esti-
mation showed that the chance levels in each pair-wise condition-
level decoding were all around 50%: 49.98% ± 0.66% in retrieval
vs. no-retrieval; 50.06% ± 0.61% in suppress vs. no-retrieval, and
49.99% ± 0.70% in retrieval vs. suppress. We thus continued to use
50% as the chance level in our condition-level decoding analysis.

For item-level decoding, we used 1-vs.-all SVMs to decode
individual items within each condition, separately. Decoding pro-
cedures were the same as condition-level decoding. Thus, the
trial numbers of each stimulus are first matched to the least
one within each participant (at most 10 trials for each stimulus,
if no trial was rejected in preprocessing). Then, the total trials
of each stimulus were randomly divided into 3 sets before aver-
aging and before the 3-fold cross validation. Both training data
set and testing data set were normalized using the mean and
standard deviation of training data set. The decoding process
was conducted on every 20 ms time point with the surrounding
±10 ms data averaged and was repeated for 10 iterations to
minimize the impact of randomization (results remained similar
when using 100 iterations, see Fig. S2a). The chance levels of
item-level decoding were estimated using the baseline periods as
described in the condition-level decoding. We used 1/number of
items as the chance level in statistical comparisons since the esti-
mations were highly similar to 1/number of items: 8.32% ± 0.27%
in Think, 8.34% ± 0.28% in No-Think, and 16.54% ± 0.58% in Per-
ceptual Baseline. For Think and No-Think conditions, the chance
levels were 1/12 (8.33%). For Perceptual Baseline trials, the chance
level was 1/6 (16.67%).

Given different numbers of items in Perceptual Baseline (6
items) and TNT conditions (12 items), we conducted a resampled
decoding in Think and No-Think, respectively. During each itera-
tion we randomly selected 6 out of all 12 items from TNT con-
ditions, before dividing and averaging into 3 sets. Considering the
randomization used only half of the items, we increased iterations
to 20 times. An item-level decoding with 20-iterations was also
repeated in Perceptual Baseline. This allows direct comparisons
between the item-level decoding accuracy in TNT with Perceptual
Baseline.

Following the statistical analysis procedure in Bae and Luck
(2018), decoding accuracy at each time point within the 0 to
3000 ms time window was compared with chance level by 1-tailed
paired t-tests. Multiple comparisons were controlled by nonpara-
metric cluster-based Monte Carlo procedure. Specifically, a null
distribution was constructed by assigning trial level classification
results to random classes (as if the classifier has no knowledge of
actual information), and then timepoint-by-timepoint t-tests were
performed to obtain a maximum summed t-value of continuous
significant time cluster, which then repeated for 1000 times.
The resulting null distribution contained 1000 summed t-values,
which would be the distribution of the cluster summed-ts when
there is no true difference between decoding results and chance
level. Both the cluster alpha and the alpha to obtain critical values
from the permutation null distribution were set at 0.05 (on the
positive tail, 1-tail against chance).

The condition-level decoding accuracy along time were similar,
except that the null distribution was constructed by randomly
assigning condition labels to trial level classification results with
2-tail repeated measure t-test and clusters were obtained on
positive/negative tails, respectively. Thus, the critical values from
the permutation null distribution were at 2.5% on the negative
clusters null distribution and 97.5% on the positive clusters null
distribution.

Condition-/item-level decoding with
time-frequency domain EEG
Time domain PCA-decomposed EEG was wavelet transformed
into time-frequency domain data in Fieldtrip Toolbox (Oostenveld
et al. 2011) before decoding, using the same parameters as
described in the time frequency analyses. Then the decoding was
conducted for each frequency bin data across time in the same
procedure as in time-domain decoding (treating each frequency
bin data as time domain data).

The statistical analyses for time-frequency domain decoding
were similar to those of time domain decoding, except that here
clusters were calculated in a 2D matrix instead of on a 1D time
axis, and the cluster alpha was set at 0.05. Also, observed clusters
were compared with the null distribution clusters of the same
rankings. The statistical comparison of a single time-frequency
decoding was performed against chance level (1-tailed), and that
of the difference between 2 time-frequency decoding was per-
formed against 0 (2-tailed). Theta (4 to 8 Hz) and alpha (9 to 12 Hz)
decoding were assessed after averaging across the corresponding
frequency bin.

Channel searchlight decoding
Since both condition- and item-level decoding used PCA-
decomposed EEGs, to examine which electrodes contributed
the most to the decoding accuracy, we conducted a channel
searchlight decoding using subsets of the 61 channels as features
(Treder 2020).

Specifically, we first divided all channels into 61 neigh-
borhoods, centering each channel according to its location
(conducted in Fieldtrip Toolbox, Oostenveld et al. 2011, via
ft_prepare_neighbors() function using “triangulation” method).
Immediately neighboring channels were clustered together,
resulting in 6.39 ± 1.50 channel neighbors for each channel
(with overlaps). Then the time domain EEG was averaged on
time windows of interest, i.e. averaged on 0 to 500 ms, 500 to
3000 ms, etc., to inspect the decoding topographical distribution
on different time windows. The rest of the procedure was the
same as time domain EEG decoding: we divided data into 3 sets
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and averaged within each set before splitting training and testing
data sets; then we normalized them using mean and standard
deviation of training sets. Finally, the decoding was conducted
with a 3-fold cross validation and 10 iterations. Theta/alpha
searchlight was conducted in the same way as time-domain
searchlight, after averaging time-frequency power on respective
oscillation range (theta: 4 to 8 Hz; alpha: 9 to 12 Hz).

We compared channel searchlight topographies between item-
level decoding in Think and No-Think with a 2-tailed paired-
sample t-test at each channel. The multiple comparisons were
controlled by cluster correction of channel neighbor clusters in
Fieldtrip (Oostenveld et al. 2011). The neighborhood was defined
in the exact same way as the channel searchlight analysis. Cluster
alpha was set at 0.05. Observed clusters were compared with null
distribution on positive/negative tails, respectively.

High- vs. low-suppression grouping
We divided 40 participants into High- vs. Low-Suppression Groups,
with 20 participants in each group based on the median split of
No-Think-minus-Baseline Detail scores ranking. We used Detail
because it captured both variability and suppression effects to a
greater extent than did Identification (limited variability since it
was a dichotomous measure) and Gist (did not show the suppres-
sion effect). Importantly, pre-TNT learning (i.e. recognition accu-
racies) was not different between the 2 subgroups (t(38) = 1.66,
P = 0.105). Moreover, a 3 (within-participants: TNT conditions) by 2
(between-participants: subgroup) ANOVA on pre-TNT recognition
accuracies showed no significant main effects or interactions
(Ps > 0.104). Thus, pre-TNT memory performance was comparable
across the 2 subgroups and across TNT conditions.

Decoding accuracy at each time point during 0 to 3000 ms
was compared between High- and Low-Suppression groups using
2-tail independent t-test. The null distribution was constructed
by randomly assigning group labels to each subject before by-
timepoint t-test, to obtain the max summed-t of continuous sig-
nificant time cluster when group labels are randomized, which
repeated for 1,000 times. The resulting 1,000 summed-t values
would be the null distribution when no true difference exists
between the 2 groups. Critical values from the permutation null
distribution were at 2.5% on the negative clusters null distribu-
tion and 97.5% on the positive clusters null distribution (2-tail,
αs = 0.05).

Correlation analyses
We calculated Spearman’s Rho for all brain-behavior correlations.
For memory, we reported the correlation with Details scores in
main text, given it is a continuous memory measure and is more
sensitive in capturing individual differences. The same correlation
analyses with Identification and Gist measures were provided in
supplementary. In condition-level decoding, memory of Think and
No-Think was normalized by subtracting and then divided by
Baseline memory. For condition-level time domain decoding, we
focused on 500 to 3000 ms given our a priori hypothesis that
neural activity between this time window would reflect retrieval
of individual memories. To investigate the time course of these
correlations, we also calculated Spearman’s Rho at each time
point. In item-level time-domain decoding, we investigated the
correlations between decoding accuracy and absolute memory
score of the same condition during 500 to 3000 ms.

The cluster correction for correlation time course was per-
formed: we first transformed Spearman’s Rho back to t-values
to obtain the observed time-course clustered t-values and a null

distribution. The null distribution was obtained by randomiz-
ing labels of the 2 variables of interest before calculating the
Spearman’s Rho and corresponding t-value. The cluster alpha
was set as 0.05, and the observed clusters were calculated for
positive and negative clusters, respectively. The critical values of
null distribution were at the 2.5% on both tails. The compari-
son between 2 correlation coefficients was conducted through a
2-sided z-test controlling for dependence (Lenhard and Lenhard
2014).

Representation similarity analysis
For cue (object) and target (aversive scene) pictures, we averaged
the subjective dissimilarity ratings from all 22 participants. This
resulted in a perceptual and a conceptual RDM for cues and
target pictures, respectively (Zhao et al. 2017; Zabicki et al. 2019).
To obtain the neural RDM, we performed a pairwise item-level
decoding using PCA-decomposed EEGs (Grootswagers et al. 2019;
Proklova et al. 2019). The decoding procedure was the same as
described in the time-domain decoding, except that the classi-
fier training and classification was performed between every 2
stimuli. This resulted in neural RDMs at every timepoint. We then
correlated this neural RDM with the cue- and target-RDMs derived
from subjective dissimilarity rating, and derived a time course
of the correlation coefficients using Spearman’s Rho. Note that
because this RSA tests the a priori hypotheses regarding the cue-
target retrieval processes, the significance of the Spearman’s Rho
was obtained via 1-sided test, and was tested during time win-
dow showing significant item-level decoding without corrections.
We repeated this analysis for each of the Think, No-Think, and
Perceptual Baseline conditions, and on perceptual and conceptual
ratings, respectively.

Results
Suppressing retrieval induces forgetting of
emotional memories
Following the eTNT task, participants completed a cued recall
test during which they verbally described the aversive scene
that they thought was linked to each of the cue objects.
We coded and scored verbal descriptions on Identification,
Gist, and Detail (see Materials and Methods). Each of these 3
scores was submitted to a 1-way repeated-measure (Think,
No-Think, and Baseline) ANOVA. Results showed a significant
condition effect on Identification (F(1.87,72.93) = 7.35, P = 0.002,
ηp

2 = 0.159); Detail (F(1.93,75.2) = 13.79, P < 0.001, ηp
2 = 0.261); and

Gist (F(1.92,74.95) = 6.22, P = 0.004, ηp
2 = 0.138). Planned contrasts

(Baseline vs. No-Think) showed significant suppression-induced
forgetting on Identification, t(39) = −2.07, P = 0.045, dz = 0.33, and
on Details, t(39) = −2.16, P = 0.037, dz = 0.34, whereas the forgetting
effect on Gist did not reach significance, t(39) = −1.58, P = 0.123,
dz = 0.25, see Fig. 1B.

Stopping retrieval is distinct from not-retrieving:
univariate and multivariate condition-level EEG
analyses
We first analyzed well-established ERPs reported in prior research
on retrieval suppression (e.g. N450, P300). Consistent with previ-
ous findings, retrieval suppression (vs. no-retrieval, i.e. the Per-
ceptual Baseline condition) significantly enhanced frontocentral
N450 (t(39) = 3.28, P = 0.002, dz = 0.52) and reduced central-parietal
P300 activities (t(39) = 4.33, P < 0.001, dz = 0.69, see Fig. S1). Visual
inspection of the ERPs suggests that the TNT conditions modu-
lated the negative slow waves over prefrontal electrodes. Indeed,
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paired-sample t-tests showed that No-Think trials significantly
reduced the NSW than Perceptual Baseline trials over the left
prefrontal electrodes, t(39) = −2.69, P = 0.010, dz = 0.43 (Fig. S1). Our
ERP results (e.g. N450, P300, NSW) are highly consistent with
existing TNT literature (e.g. Depue et al. 2013; Hu et al. 2015; Wald-
hauser et al. 2015; Hellerstedt et al. 2016; Satish et al. 2022). Thus,
we mainly focus on the results from the multivariate decoding
analyses.

The between-condition ERP differences are corroborated by
between-condition multivariate analysis. The condition-level
multivariate decoding not only distinguished retrieval suppres-
sion from voluntary retrieval (NT vs. T, Pcorrected < 0.001, Fig. 2C,
purple), but also from no-retrieval (NT vs. PB, Pcorrected < 0.001,
Fig. 2C, red). These differences imply that distinct cognitive
operations contributed during retrieval suppression compared
with either voluntary retrieval or no-retrieval. Differences
between No-Think and Think conditions emerged as early as
140 ms and persisted throughout the entire trial period until
∼3000 ms. In addition, we also could distinguish retrieval from
no-retrieval (T vs. PB, Pcorrected < 0.001, Fig. 2C, green). We also
found that the latter 500 to 3000 ms T vs. PB decoding accuracies
tended to predict better scene retention of the Think items in
later Detail recall, r = 0.31, P = 0.053 (Fig. 2D, though the result
was not statistically significant), and they significantly predicted
Identification, r = 0.36, P = 0.022 (Fig. S2b). These results suggested
that at least some of the latter T vs. PB decoding differences
were associated with active retrieval processes during the Think
condition.

Retrieval suppression could also be distinguished from
retrieval and passive viewing based on time-frequency domain
EEGs. The between-condition decoding results revealed differ-
ences among all pairwise comparisons (Fig. S2c and d). Consistent
with an early, active control process associated with suppression,
we found, within the first 500 ms, significant NT vs. PB decoding
in 4 to 8 Hz theta activity over the frontal and posterior regions,
which continued throughout the 3000 ms epoch (Fig. S2e).
Time-frequency results showed that, during the 200 to 400 ms
window, retrieval suppression (vs. retrieval or no-retrieval) led
to enhanced midline and right prefrontal theta power (NT > PB,
Pcorrected = 0.002, Fig. 2E; NT > T, Pcorrected = 0.007, Fig. S4g). After
this early theta enhancement, suppression was associated with
reduced mid-frontal theta power from 500 to 3000 ms (NT < PB,
theta: Pcorrected < 0.001, Fig. S3b; NT < T, theta: Pcorrected = 0.004,
Fig. S4b, see Fig. S6 for the time-frequency representations in
each condition).

Retrieval suppression also could be distinguished based on
alpha activity, and such effects were enduring. Indeed, 9 to
12 Hz alpha activity drove condition-level decoding performance
between 500 and 3000 ms (Fig. S2d) with retrieval suppression
reducing alpha (NT < PB, Pcorrected = 0.002, NT < T, Pcorrected < 0.001,
Figs. S3 and S4). Together, these findings suggest that increases
in early theta power and reductions in later theta/alpha power
may be hallmarks of active suppression that make it qualitatively
distinct from simply not-retrieving.

Spatial patterns in EEG discern individual
episodic memories during retrieval: multivariate
item-level EEG analyses
Observing the suppression of individual memories requires an
index sensitive to brain activity unique to each memory item so
that the impact on suppression on that index may be tracked. We
hypothesized that the spatial-temporal pattern of scalp-EEG as
participants thought about each scene may contain information

sufficient to distinguish that specific scene from all the others.
To test this hypothesis, we performed a decoding analysis on
PCA-decomposed EEG during Think trials, during which partici-
pants actively reinstated associated scenes. Consistent with our
hypothesis, time-domain EEGs distinguished between individual
scene memories across 0 to 1900 ms (Fig. 3A, Pcorrected < 0.001).
In sharp contrast, for Perceptual Baseline trials, above-chance
decoding of individual items arose only in the 0 to 500 ms (to
be precise, 80 to 480 ms, Pcorrected = 0.010), but not in the 500 to
3000 ms window (Fig. 3C). To directly compare item-level decod-
ing between retrieval and PB, we repeated the analyses with 6
randomly sampled items from the Think condition, to match
the item number in the Perceptual Baseline (see Materials and
Methods). We found that Think trials showed higher item-level
decoding accuracies than Perceptual Baseline trials during the 300
to 1280 ms window (Pcorrected < 0.001, Fig. 3K, purple lines).

Successful decoding of individual items in the early time win-
dow (e.g. 0 to 300 ms) likely reflects visual processing of unique
object retrieval cues, which are present both for the object-scene
pairs used in the Think condition, and in the single objects used in
the PB condition. In the subsequent 300 to 1280 ms time window,
however, higher decoding during Think trials would need to be
driven by an item-specific processing present in the Think condi-
tion but not in the no-retrieval, PB condition. One possibility is that
this later item-specific effect in the Think condition may reflect
the reinstatement and maintenance of unique unpleasant scenes
associated to the object cue, which may have gradually begun to
emerge in awareness as they were recollected. Another possibility,
however, is that item-level decoding in the Think condition may
simply reflect more sustained attention to unique object cues in
that condition, relative to the PB condition, for which participants
may have correctly concluded that retrieval was unnecessary.

To distinguish these possibilities, we examined scalp regions
giving rise to above-chance decoding during Think trials using
searchlight decoding (see Materials and Methods). If greater
decoding of individual items in the Think condition reflected
sustained visual processing of object cues, successful decoding
may be restricted to regions involved in object perception. Indeed,
during the first 500 ms, occipital EEGs primarily drove the
significant decoding in general, consistent with a primary role
of visual-perceptual cue processing (Fig. 3D). In contrast, during
the latter 500 to 3000 ms interval, significant decoding rested
on a distributed set of regions implicated in memory retrieval
such as the right prefrontal and parietal-occipital cortex (Fig. 3E).
This finding suggests that item-level decoding beyond the first
500 ms is not dominated by object cue attention, but rather by
the reinstatement of the associated scene memories. Converging
with this possibility, item-level decoding accuracies during the
latter 500 to 3000 ms time window tended to predict better scene
memory on the Detail measure (though the correlation was not
significant, r = 0.31, P = 0.054, Fig. 3J), whereas decoding during the
early 0 to 500 ms time window did not (r = −0.10, P = 0.547).

Unlike during Think trials, the same searchlight analysis during
Perceptual Baseline trials showed that significant decoding in
the 0 to 500 ms window arose over a small cluster of occipital
electrodes. The restriction of decoding success to occipital cortex
suggests that classification hinged on visual object processing
during that period (Fig. 3H). After this initial window, the latter
part of the trial from 500 to 3000 ms showed no significant
decoding at any electrode (Fig. 3I).

In sum, during retrieval, time-resolved EEG patterns suggest
a staged cued-recall process: during the 0 to 500 ms window,
EEG patterns could discern perceived items over occipital regions;
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Fig. 2. Decoding approaches diagram and condition-level time-domain EEG decoding results. A, B) An illustration of trial flow in the EEG-based eTNT task,
and the logic of decoding analyses. C) Condition-level decoding based on time domain EEGs revealed significant differences in all 3 pairwise comparisons.
Colored lines along x axis indicate significant clusters (permutation cluster corrected): No-Think vs. Perceptual Baseline, 80 to 2180 ms, Pcorrected < 0.001;
Think vs. Perceptual Baseline, 380 to 1640 ms, Pcorrected < 0.001; Think vs. No-Think, 140 to 2960 ms, Pcorrected < 0.001. Shaded areas indicate standard
errors of the mean (S.E.M). D) Time domain Think vs. Perceptual Baseline decoding accuracies during the 500 to 3000 ms window was positively correlated
with the above-baseline enhancement of memory recall in the Think condition, based on the Detail score, (Think − Baseline)/Baseline, in the final cued
recall test, i.e. the retrieval benefit, proportional to baseline. E) Retrieval suppression elicited stronger theta power than no-retrieval during 200 to 400 ms
(NT > PB). The decreased theta power showed a frontal-central distribution. Significant electrodes were cluster corrected and are highlighted.

during 500 to 3000 ms, EEG patterns could distinguish among
retrieved items over frontoparietal-occipital regions. Furthermore,
higher item-level decoding accuracies tended to predict better
scene memory only in this latter, 500 to 3000 ms time window.

Suppressing retrieval weakens and abolishes
item-specific cortical patterns: evidence from
multivariate EEG item-level analyses
Having established that the retrieval of individual scene memo-
ries can be indexed and tracked, we next sought to use this index
to determine how and when suppression affected cortical pat-
terns relating to individual memories. To this end, we examined
whether retrieval suppression modulated item-specific cortical
EEG patterns, particularly during the time window implicated in
episodic retrieval.

We hypothesized that item-level decoding during No-Think
trials would be possible initially, as participants focused their
attention on the visually unique reminder cues, but that suppres-
sion would limit successful decoding throughout the remainder
of the trial. Indeed, in the No-Think condition, item-level decoding

accuracy was above chance from 100 ms, and remained so until
780 ms (Pscorrected = 0.002, Fig. 3B); decoding accuracy then dropped
to chance-levels for the remainder of the 3000 ms. Consistent
with the Think and Perceptual Baseline analyses, we used a priori
defined time windows from 0 to 500 and 500 to 3000 ms to
characterize the EEG scalp distributions contributing to decoding
success. During the 0 to 500 ms window, item-level decoding
was driven by occipital activity, resembling the EEG distributions
found in the Perceptual Baseline condition during the same win-
dow (Fig. 3F and H). Strikingly, during the 500 to 3000 ms, there
were no brain regions that contributed significantly to item-level
decoding (Fig. 3G), suggesting that suppression had abolished evi-
dence for cortical reinstatement of scene memories.

In addition to scalp EEG distributions revealed by the channel
searchlight analysis, confusion matrices of item-level decoding
provided converging evidence supporting the hypothesized stages
of retrieval suppression: we observed significant above-chance
item-specific classifications in all 3 conditions during the first
500 ms, when cue-processing might be expected to predominate;
in contrast, distinctive classification patterns remained only in
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Fig. 3. Item-level time domain decoding. A to C) The item-level decoding patterns (averaged across participants) in each retrieval condition. Lines at the
bottom indicate significant time clusters against chance level, with permutation cluster correction (αs = 0.05). D to I) Channel searchlight analyses of
time domain decoding during an early (0 to 500 ms) and a later time window (500 to 3000 ms). The color bar indicates decoding accuracy. Electrodes
with significant decoding accuracies are highlighted (permutation cluster corrected, αs = 0.05). J) During Think trials, decoding accuracies averaged on
500 to 3000 ms predicted the number of details recalled from emotional scenes. K) Item-level decoding in the Think condition (using 6 resampled items)
is higher than it is in the Perceptual Baseline condition from 300 to 1280 ms, Pcorrected < 0.001. Lines at the bottom indicate cluster-corrected significant
time clusters against the chance level (green and blue for think and perceptual baseline) or the difference between the 2 conditions (purple). l) Item-level
decoding in the No-Think condition (using 6 resampled items) is not significantly different from decoding in the Perceptual Baseline condition. Lines at
the bottom indicate significant time clusters against the chance level (red and blue for No-Think and Perceptual Baseline conditions, respectively).

the Think condition during 500 to 3000 ms (Fig. S7b). Thus, sup-
pression reduced cortical patterns during No-Think trials to the
extent that they were as uninformative as items in our perceptual
baseline condition, in which no scene retrieval was possible.

To precisely characterize the temporal dynamics of retrieval
suppression, we contrasted the time-dependent evolution of item-
specific cortical patterns between retrieval suppression and both
the retrieval and no-retrieval/perceptual baseline conditions. A
direct comparison of Think vs. No-Think item-level decoding
revealed that retrieval suppression reduced decoding accuracies
from 360 to 600 ms (Pcorrected = 0.027, Fig. 4A, left panel). Search-
light analyses during 360 to 600 ms revealed that, whereas vol-
untary retrieval engaged item-specific brain activity over frontal-
parietal-occipital regions, retrieval suppression was only asso-
ciated with occipital activity (Fig. 4A, right panel). When No-
Think trials were directly compared with Perceptual Baseline
trials (using 6 randomly sampled items from the No-Think con-
dition), none of the differences survived permutation-based sig-
nificant tests during the entire 0 to 3000 ms (see Fig. 3L).

Reduced decoding accuracy for individual No-Think items in
the 360 to 600 ms window suggests that the retrieval stopping
process may begin to exert its first effects within this window,
a possibility consistent with findings from our condition-level

decoding analyses. We next sought to determine whether
prefrontal-control processes were linked to suppressed item-level
decoding. Indeed, we found that in the No-Think (vs. Think) trials,
this reduced item-level decoding was preceded by enhanced 200
to 400 ms theta power over midline and right prefrontal cortex
(Fig. 2E).

Together with the evidence for suppression-specific patterns
in the condition level analysis, these item-level decoding results
reveal a precise timeline of how retrieval suppression unfolded:
inhibitory control was engaged within the first 500 ms upon
encountering an unwelcome reminder cue, presumably before
the cue-to-memory conversion process completed, to obstruct
retrieval and prevent reinstatement from happening. This early
control weakened, and eventually abolished memory-specific cor-
tical patterns during 500 to 3000 ms.

Rapid suppression of individual memories led to
their forgetting
To understand how the temporal dynamics of retrieval sup-
pression influenced later forgetting of suppressed memories,
we divided participants into High- vs. Low-Suppression groups
based on a median-split of suppression-induced forgetting
scores. We focused on below-baseline forgetting using our detail
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Fig. 4. Item-level decoding results in high- and low-suppression groups. A) Retrieval suppression significantly reduced item-level decoding accuracies from
360 to 600 ms compared with retrieval (NT < T), with the right panel showing channel searchlight analyses on this time window. B, C) Comparisons
between Think and No-Think item-level decoding in high-/low-suppression groups, respectively. In the high-suppression group, the Think vs. No-Think
difference was significant during 280 to 620 ms, whereas no differences were found in the low-suppression group. Purple shades denote significant time
clusters between conditions/groups (permutation corrected, 2-sided αs = 0.05).

measure of scene recall (i.e. BL-minus-NT Detail scores, with
a higher score indicating higher forgetting). Note that when
using scores controlling for overall memory performance, i.e.
(BL-minus-NT)/BL, participants assigned into High- vs. Low-
Suppression groups were the same. We tested the hypothesis
that successful suppression-induced forgetting was associated
with a greater reduction in decoding accuracy (i.e. NT < T),
compared with unsuccessful forgetting. In the High-Suppression
group, suppression significantly reduced item-specific decoding
accuracy in No-Think (vs. Think) trials during 280 to 620 ms
(Pcorrected = 0.017, Fig. 4B, purple shades). In contrast, in the Low-
Suppression group (Fig. 4C), the same comparison revealed no
NT vs. T decoding accuracy differences. In the High-Suppression
group, the observed differences may reflect an early disruption
of cue-to-memory conversion processes occurring at around
500 ms. Besides the within-group differences, there were no
significant between-group differences in either TNT conditions
(Fig. S7c). Note that when using a data-driven K-means clustering

method to categorize participants into high- and low-suppression
subgroups, we obtained results that are highly similar to the
results reported in Fig. 4 (see Fig. S8). Together, these results
highlight the important role of an early, active suppression
process in successful suppression-induced forgetting.

Theta and alpha oscillations track item-level
perception and reinstatement processes,
respectively
We sought converging evidence for the active suppression of
individual memories by tracking item-specific oscillatory activity
in the theta and alpha bands. Theta and alpha activities have
been implicated in perceptual and memory-related processes,
such that theta may reflect sensory intake and hippocampo-
cortical communication loops (Colgin 2013; Bastos et al. 2015),
and alpha may index associative memory and episodic retrieval
processes (Hanslmayr et al. 2012a, 2012b; Martín-Buro et al. 2020).
If so, posterior theta activity may enable item-specific decoding
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of the cue objects themselves, whereas alpha activity may enable
decoding of reinstated scenes.

In all 3 conditions, we found that theta activity in the 0 to
500 ms window over occipital regions significantly distinguished
among individual items, consistent with theta’s putative role
in visual processing of individual cue objects (Pscorrected < 0.001,
Fig. S9a to c, also see Fig. S9d to g). During the 500 to 3000 ms
window in which scene recollection could unfold, both theta and
alpha power drove significant decoding accuracy during Think
trials (theta: Pscorrected < 0.027; alpha: Pscorrected < 0.039, Fig. S9d).
Critically, however, retrieval suppression during No-Think trials
abolished any evidence for item-specific decoding based on
theta or alpha band activity (Fig. S9e). There was short-lived
theta-driven decoding in Perceptual Baseline trials, which may
reflect occasional perceptual processing of objects (theta:
Pscorrected < 0.011, Fig. S9f). Channel searchlight analyses during
the 500 to 3000 ms window revealed that alpha activity over the
occipital-parietal region contributed to decoding performance
in the Think condition, but did not in either the No-Think or
Perceptual Baseline conditions (see Fig. S9h). These findings
support the possibility that alpha activity is linked with scene-
specific memory reinstatement processes and not simply to
object perception. If so, the lack of significant alpha-based
decoding in No-Think trials reflects the abolition of memory
reinstatement processes arising because of active suppression.

RSA supports staged cued-recall in Think and
the suppression of retrieval in No-Think
To further investigate the representational nature underlying
item-level decoding results, we collected subjective perceptual
and conceptual dissimilarity ratings from an independent
group of participants. We used another sample of participants’
subjective ratings to construct a subjective RDM, which was then
correlated with the neural RDM consisting of pairwise item-level
EEG decoding results. We found significant positive correlations
between cue perceptual RDM and the neural RDM before 500 ms
in all 3 conditions (Think, No-Think, Perceptual Baseline,
Fig. 5A to C). This corroborates the notion that significant item-
level decoding prior to 500 ms reflect perceptual processing of cues,
regardless of retrieval conditions.

Notably, we found significant positive correlations between
target conceptual RDM and the neural RDM around 1000 ms only
in the Think condition (Fig. 5D, darker green line), suggesting that
the item-level decoding during the later time windows in the
retrieval condition was driven by conceptual processing of the
retrieved scenes. Notably, this time window overlapped with our
hypothesized scene reinstatement window identified in the time-
resolved item-level decoding analysis. Meanwhile, no correlations
were found between either cue perceptual/conceptual RDMs after
500 ms, arguing against the possibility that the decoding results
may capture sustained attention towards cue. We noticed that the
RSA correlations were unexpectedly high during the pre-stimulus
baseline, which could be because of random fluctuations of item-
level decoding accuracies during this time window (even though
the mean decoding accuracy equals the chance level).

Together, RSA results supported the staged cued recall
in Think trials such that the <500 ms decoding reflected
perceptual-related cue processing, whereas the 500 to 1000 ms
decoding represented conceptual-related processing of the scene
memories. In contrast, retrieval suppression selectively weakened
the retrieval of scene memories in No-Think, diminishing both
item-level decoding accuracies and their correlations with the
target conceptual RDM during the reinstatement window.

Discussion
Suppressing memory retrieval requires effort; it is not simply
neglecting to engage retrieval when an unwelcome reminder
appears, but instead involves an active inhibition process (Wimber
et al. 2015; Anderson and Hulbert 2021). However, how active
suppression unfolds over time to impact individual memories
remains poorly understood. Applying multivariate pattern anal-
yses during the eTNT task, we observed, for the first time, the
dynamics of how individual aversive memories are suppressed.
We found that effective forgetting is associated with (i) the rapid
deployment of inhibitory control in suppressing cortical patterns
within the first 500 ms, supported by enhanced midfrontal theta
activity during efforts to stop retrieval; and (ii) abolished item-
specific cortical EEG patterns reflected in the spatial pattern of
theta and alpha activity during the 500 to 3000 ms window. This
precise chronometry provides new knowledge about the time win-
dows and neural activity critical to achieving successful forgetting
via retrieval suppression.

Three findings suggest that an early, active control process
truncates retrieval of individual memories, facilitating later
forgetting. First, when a reminder cue appeared, within 500 ms
retrieval suppression enhanced frontocentral N450 and mid-
/right-prefrontal theta activity relative to active retrieval and also
relative to a perceptual baseline condition in which scene retrieval
was impossible. Given evidence linking frontocentral N450 and
frontal midline theta and inhibitory control, particularly during
retrieval suppression (Bergström et al. 2009; Cavanagh and Frank
2014; Crespo-García et al. 2022; Mecklinger et al. 2009; Nigbur
et al. 2011; Waldhauser et al. 2015), this finding is consistent with
the possibility that attempts to stop the retrieval process engaged
early inhibitory control. This finding suggests a rapid onset of
inhibitory control in the face of an unwelcome reminder, but does
not, by itself, link that control process to the successful exclusion
of unwanted memories from awareness.

Second, whereas we detected significant item-specific brain
activity during active retrieval, retrieval suppression reduced the
ability to detect individual items during the 360 to 600 ms time
window. The ability to detect reduced item-specific activity in
such an early time window indicates that suppression rapidly
targets individual unwanted memories and interrupts their
retrieval. Estimates based on intracranial EEG recordings suggest
that beginning at around 500 ms, hippocampus-dependent
pattern completion would normally trigger cortical reinstatement
of target memories, accompanied by vivid recollection (Lavenex
and Amaral 2000; Colgin 2016; Staresina and Wimber 2019). Given
this timing, successful retrieval suppression ideally should be
engaged prior to this time window to preempt or truncate the
cue-to-memory conversion processes, preventing memories from
being reinstated. However, these findings themselves do not link
early reductions in cortical reinstatement to later forgetting of
the suppressed content.

Third, reduced item-level decoding accuracies during this early
time window was associated with later suppression-induced
forgetting. Specifically, whereas High-Suppression participants
exhibited significantly reduced item-level decoding accuracies
during suppression, compared with retrieval in the 280 to 620 ms
window, Low-Suppression participants did not. This links the
early engagement of control to an increased capacity to forget
the suppressed content. Given that hippocampus-dependent
pattern completion processes emerge at around 500 ms (Staresina
and Wimber 2019), this finding again suggests that successful
forgetting depends on rapidly deployed top-down inhibitory
control before or during the cue-to-memory conversion time
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Fig. 5. RSA. A to C) Perceptual dissimilarity RSA revealed significant positive correlations during the 0 to 500 ms window between cue perceptual
dissimilarity rating and item-level pairwise decoding in all 3 conditions. The correlation coefficients between item-level pairwise decoding accuracy and
subjective rating of perceptual dissimilarity rating between items (object cues/target scenes in Think and No-Think, objects in Perceptual Baseline) are
plotted on the right y axis with colors (Think: green; No-Think: red; Perceptual Baseline: blue), with same-colored disks indicating significant time periods
(uncorrected). D to F) Conceptual dissimilarity RSA revealed significant positive correlations on 500 to 1500 ms window between target conceptual
dissimilarity rating and item-level pairwise decoding, only in the think condition. The correlation coefficients between item-level pairwise decoding
accuracy and subjective rating of conceptual dissimilarity rating between items (object cues/target scenes in Think and No-Think, objects in Perceptual
Baseline) are plotted on the right y axis with colors (Think: green; No-Think: red; Perceptual Baseline: blue), with same-colored disks indicating significant
time periods (uncorrected). Significant item-level decoding accuracies of each condition were plotted on the left y axis in gray dashed lines, with gray
shade areas indicating significant time periods (same as in Fig. 3A to C).

window, preventing cortical reinstatement that would occur in
later time windows.

Whereas rapid control significantly attenuated item-level
decoding accuracies at around 500 ms, sustained control also
occurs during retrieval suppression. Specifically, during the 500
to 3000 ms time window after suppression cue onset, on average
MVPA could no longer identify item-specific EEG patterns, yielding
findings similar to those in the no-retrieval perceptual baseline
condition. The maintenance of control over this longer time period
was associated with reduced alpha power throughout the trial
(e.g. Waldhauser et al. 2015; Satish et al. 2022). Together, these
temporal characteristics reveal a timeline for the suppression of
aversive scenes: early control processes truncate retrieval during
the perception-to-memory conversion time window (e.g. ∼ 360 to
600 ms), with sustained control processes downregulating and
eventually abolishing item-specific cortical patterns during the
memory reinstatement window until the end of the trial (∼800 to
3000 ms).

Because both the object and the scene for each pair are unique,
relative to all other pairs, we considered the possibility that our
item-level decoding results during voluntary retrieval (i.e. Think)
might not reflect reinstatement of the associated memory, but
rather reflect sustained covert attention to individual object.
Three features of our findings argue against this possibility, how-
ever. First, we found that the early (0 to 500 ms) vs. late (500 to
3000 ms) decoding patterns during Think trials were characterized
by distinct EEG spatial distributions, suggesting a qualitative shift
in processing over time, consistent with perception-to-memory
staged recall model (Staresina and Wimber 2019). Second, we

found that only decoding accuracy during the 500 to 3000 ms, but
not the 0 to 500 ms window, tended to predict better recall of Think
items on the later memory test. Third, our RSA provided additional
evidence that only the early (0 to 500 ms) time window reflected
perceptual processing of the cue object. Despite the extended
presentation of the cue object, the item-specific EEG decoding
patterns derived from later time windows during retrieval were
more strongly associated with participants’ conceptual similarity
judgments than with their perceptual judgments on cue objects.
Thus, converging evidence from different analytical approaches
suggests that whereas the early EEG decoding patterns reflect
perceptual processes acting on item-specific cues, the later EEG
decoding patterns during Think likely reflect recollection of the
accompanying scene. These results and the timelines found here
are highly consistent with research in the neural chronometry of
cued recall (Staresina and Wimber 2019).

Consistent with this interpretation, both theta and alpha power
contributed to item-level decoding during voluntary retrieval,
with an early onset of occipital theta activity followed by parietal-
occipital alpha activity. Theta and alpha activities have been
implicated in perceptual and memory-related processes, such
that theta may reflect sensory intake and hippocampo-cortical
communication loops (Colgin 2013; Bastos et al. 2015). Relatedly,
linking behavioral oscillation and neural oscillation, a recent
study demonstrated a prominent role of theta rhythm in memory
retrieval (Ter Wal et al. 2021). Decoding patterns during Perceptual
Baseline trials provided converging support for this account: when
participants viewed object cues that lacked any associated scene
memory, only occipital theta activity in the 0 to 500 ms window
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drove significant item-level decoding, ruling out any contribution
of scene retrieval.

If the foregoing staged view of retrieval is correct, then item-
specific decoding based on alpha-band activity after initial cue
processing may reflect the reinstatement of individual scenes
(Staresina et al. 2019; Staresina and Wimber 2019). For example,
in a directed forgetting task, Fellner et al. (2020) reported alpha
power increases 1000 to 2000 ms following to-be-remembered
cues, which were associated with selective rehearsal processes.
Mirroring this result, we found that compared with No-Think or
Perceptual Baseline trials, Think condition enhanced alpha power
during the same 1000 to 2000 ms window when reinstatement
of the associated scene would be expected (Fig. S5). This result
may appear inconsistent with the influential Sync/desync model,
which posits that alpha power reduction was associated with
successful memory formation and retrieval (e.g. Hanslmayr et al.
2012a, 2016). Moreover, previous TNT research also showed that
Think trials were associated with alpha power reduction within
1000 ms post-cue (Depue et al. 2013). However, it should be
noted that our Think trials required participants to maintain the
complex negative scenes in mnemonic awareness while shielding
distracting information from the external environment, which
could increase alpha power (see Bäuml et al. 2008; Bonnefond
and Jensen 2012; Xie et al. 2020). Relatedly, our results are highly
consistent with many prior TNT studies, such that No-Think trials
were associated with sustained alpha power reduction relative
to Think trials (see Waldhauser et al. 2015; Legrand et al. 2020;
Satish et al. 2022). In particular, the relative reduction of alpha
power during No-Think trials may reflect active downregula-
tion and sustained control of unwanted memories, together with
weakened/abolished memory reinstatement throughout the 500
to 3000 ms time window. These results highlight the importance of
interpreting alpha power dynamics in memory tasks considering
the experimental design/instructions and the specific cognitive
processes.

Whereas our results suggest that the 500 to 3000 ms Think
vs. No-Think differences in item-specific decoding patterns
reflected suppression of individual memories, it is possible
that different levels of attention to cues during this period
also contributed to observed effects. Although we strongly
emphasized that participants should pay full and sustained
attention to cues regardless of retrieval conditions, participants
might have disengaged from object cues in No-Think and
Perceptual Baseline, once they figured out that retrieval was not
necessary. Thus, variations in attention devoted to object cues
could contribute to the Think vs. No-Think differences in item-
specific decoding accuracies. However, the Think vs. No-Think
item-level decoding differences were most evident among High-
Suppression participants, suggesting the decoding accuracies
were linked with the behavioral aftereffects of retrieval vs.
retrieval suppression. Furthermore, correlating the cue-/target-
related perceptual/conceptual RDMs with the neural RDMs during
500 to 3000 ms, the RSA results showed that while significant
decoding in Think trials were associated with scene-related
conceptual processing, there was no evidence of scene-related
processing during No-Think trials. This additional evidence
supports the argument that the item-level decoding patterns in
the later time window may reflect target scene-related retrieval
processing, rather than the cue object-related attentional
variations.

Despite of these supporting evidence, one limitation of our
experiment is that we did not record EEGs during the encoding

phase, nor include a separate object-vs.-scene functional localizer
task. Future research shall include such functional localizer tasks
to better capture cue- and target-specific neural representations
and the cue-to-memory conversion processes (e.g. Treder et al.
2021; Legrand et al. 2022). Moreover, despite the advantage of
EEG multivariate analyses, the relatively poor spatial resolution
of scalp EEG did not allow us to delineate the specific brain
regions involved. To overcome this limitation, techniques such as
simultaneous EEG and fMRI recording (e.g. Crespo-Garcia et al.
2022) or intracranial EEG (Ten Oever et al. 2021) that afford both
high temporal and spatial resolution bear promises in revealing
the precise spatial-temporal neural dynamics underlying retrieval
suppression.

Another open question is the extent to which the observed tem-
poral patterns in retrieval and retrieval suppression could be gen-
eralized to non-aversive memories. Given that we used aversive
scenes to better simulate the control of real-life unwanted mem-
ories, the observed decoding results and the temporal dynam-
ics could be specific to negative scene memories. However, our
hypothesis on the temporal dynamics of retrieval suppression is
largely guided by the cued recall chronometry research (Yaffe
et al. 2014; Staresina et al. 2019; Staresina and Wimber 2019;
Treder et al. 2021), which mostly uses neutral materials such
as words or object images. It is thus plausible that the results
observed here could be generalized to other materials, such as
neutral pictures. Future research can directly compare the tempo-
ral dynamics of suppressing individual aversive vs. non-aversive
memory to test this possibility.

Taken together, our findings show that for successful retrieval
suppression and forgetting, inhibitory control needs to be
deployed rapidly. On the one hand, early enhanced frontal
theta disrupted cue-to-memory conversion, truncating the
reinstatement of individual aversive scene memories within the
first 500 ms upon seeing the cues. On the other hand, sustained
control weakened and eventually abolished item-specific cortical
EEG patterns during the 500 to 3000 ms time window, reflected
in reduced alpha activity. In contrast, diminished early control
compromised successful voluntary forgetting of suppressed
content. By tracking the precise timing and neural dynamics
of retrieval suppression in modulating individual memories, our
results may inform future research on when and how to intervene
during retrieval suppression to improve people’s ability to forget
unwanted memories.
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